Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Bull Natl Res Cent ; 46(1): 222, 2022.
Article in English | MEDLINE | ID: covidwho-1962913

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease-2019 (COVID-19). Elderly subjects, obese, and patients with chronic illnesses, are the most affected group. HDL has pleiotropic physiological functions that are affected with alteration(s) in its structure. Main text: Inflammation whether septic, immune, or other affects HDL structure and function. COVID-19 is associated with systemic immune-inflammation due to cytokine surge. Viral interaction with erythrocytes and hemoglobin-related compounds (may cause anemia and hypoxia) and other factors may affect HDL function. Trials have been conducted to resume HDL functions using peptide preparation, nutritional, and herbal elements. Conclusions: In this review article, I'll discuss the use of reconstituted HDL (rHDL), Apo-A1 mimetic peptide D-4F, ω-3 polyunsaturated fatty acids, and the powdered roots and/or extract of Saussurea lappa (costus) to avoid comorbidity and mortality of COVID-19 in patients with chronic illness or elderly-age mortality.

3.
Travel Med Infect Dis ; 44: 102200, 2021.
Article in English | MEDLINE | ID: covidwho-1500295

ABSTRACT

INTRODUCTION: Apolipoproteins are predictive biomarkers for cardiovascular, neoplasms and cerebrovascular diseases and are postulated as prognostic biomarkers in infectious diseases, as COVID-19. Thus, we assessed the prognosis value of apolipoproteins for COVID-19 severity and mortality. METHODS: We conducted a systematic review and meta-analysis using observational studies that reported the association between apolipoproteins and severity or mortality in COVID-19 patients. Newcastle-Ottawa was used for the quality assessment of included studies. Effects measurements were shown as odds ratios (ORs) with 95% confidence intervals (CIs), and Egger-test was developed for assessing the risk of bias publication. RESULTS: We analyzed 12 cohort studies (n = 3580). Patients with low ApoliproteinA1 (ApoA1) (OR 0.35; 95%CI 0.24 to 0.49; P < 0.001) and ApoliproteinB (ApoB) (OR = 0.78; 95%CI 0.69 to 0.87; P < 0.001) values had a higher risk of developing severe disease. ApoB/ApoA1 ratio showed no statistically significant association with higher odds of severity. Low ApoA1 levels were associated with higher odds of all-cause mortality (OR = 0.34; 95%CI 0.20 to 0.57; P < 0.001). ApoB values showed no statistically significant association with a high risk of all-cause mortality. CONCLUSION: We suggest that adequate levels of ApoA1 and ApoB can be a protective factor for severity in COVID-19, and ApoB/ApoA1 ratio did not show predictive utility for severity.


Subject(s)
COVID-19 , Apolipoprotein A-I , Apolipoproteins , Humans , Prognosis , Risk Factors , SARS-CoV-2
4.
Virulence ; 12(1): 2214-2227, 2021 12.
Article in English | MEDLINE | ID: covidwho-1398027

ABSTRACT

An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Peptides/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Basigin/metabolism , Cytokines/metabolism , Epithelial Cells , Heparan Sulfate Proteoglycans/metabolism , Humans , Inflammation , Interferons/metabolism , Oxidative Stress/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects , Virus Internalization/drug effects
5.
Medicines (Basel) ; 8(7)2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1314695

ABSTRACT

The composition and properties of apolipoprotein (apo) A-I and apoA-II in high-density lipoproteins (HDL) might be critical to SARS-CoV-2 infection via SR-BI and antiviral activity against COVID-19. HDL containing native apoA-I showed potent antiviral activity, while HDL containing glycated apoA-I or other apolipoproteins did not. However, there has been no report to elucidate the putative role of apoA-II in the antiviral activity of HDL.

6.
J Clin Lab Anal ; 35(8): e23911, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1308972

ABSTRACT

BACKGROUND: Dyslipidemia has been observed in patients with coronavirus disease 2019 (COVID-19). This study aimed to investigate blood lipid profiles in patients with COVID-19 and to explore their predictive values for COVID-19 severity. METHODS: A total of 142 consecutive patients with COVID-19 were included in this single-center retrospective study. Blood lipid profile characteristics were investigated in patients with COVID-19 in comparison with 77 age- and gender-matched healthy subjects, their predictive values for COVID-19 severity were analyzed by using multivariable logistic regression analysis, and their prediction efficiencies were evaluated by using receiver operator characteristic (ROC) curves. RESULTS: There were 125 and 17 cases in the non-severe and severe groups, respectively. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein A1 (ApoA1) gradually decreased across the groups in the following order: healthy controls, non-severe group, and severe group. ApoA1 was identified as an independent risk factor for COVID-19 severity (adjusted odds ratio [OR]: 0.865, 95% confidence interval [CI]: 0.800-0.935, p < 0.001), along with interleukin-6 (IL-6) (adjusted OR: 1.097, 95% CI: 1.034-1.165, p = 0.002). ApoA1 exhibited the highest area under the ROC curve (AUC) among all single markers (AUC: 0.896, 95% CI: 0.834-0.941); moreover, the risk model established using ApoA1 and IL-6 enhanced prediction efficiency (AUC: 0.977, 95% CI: 0.932-0.995). CONCLUSION: Blood lipid profiles in patients with COVID-19 are quite abnormal compared with those in healthy subjects, especially in severe cases. Serum ApoA1 may represent a good indicator for predicting the severity of COVID-19.


Subject(s)
Apolipoprotein A-I/blood , COVID-19/etiology , Adult , Aged , Area Under Curve , Biomarkers/blood , COVID-19/blood , COVID-19/epidemiology , Case-Control Studies , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Comorbidity , Female , Humans , Lipids/blood , Male , Middle Aged , Retrospective Studies , Risk Factors , Severity of Illness Index
7.
Pharmaceuticals (Basel) ; 14(5)2021 May 13.
Article in English | MEDLINE | ID: covidwho-1244097

ABSTRACT

In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins' yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units-erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.

8.
Front Cardiovasc Med ; 7: 584987, 2020.
Article in English | MEDLINE | ID: covidwho-993346

ABSTRACT

Background: Emerging studies have described and analyzed epidemiological, clinical, laboratory, and radiological features of COVID-19 patients. Yet, scarce information is available regarding the association of lipid profile features and disease severity and mortality. Methods: We conducted a prospective observational cohort study to investigate lipid profile features in patients with COVID-19. From 9 February to 4 April 2020, a total of 99 patients (31 critically ill and 20 severely ill) with confirmed COVID-19 were included in the study. Dynamic alterations in lipid profiles were recorded and tracked. Outcomes were followed up until 4 April 2020. Results: We found that high-density lipoprotein-cholesterol (HDL-C) and apolipoprotein A-1 (apoA-1) levels were significantly lower in the severe disease group, with mortality cases showing the lowest levels (p < 0.0001). Furthermore, HDL-C and apoA-1 levels were independently associated with disease severity (apoA-1: odds ratio (OR): 0.651, 95% confidence interval (CI): 0.456-0.929, p = 0.018; HDL-C: OR: 0.643, 95% CI: 0.456-0.906, p = 0.012). For predicting disease severity, the areas under the receiver operating characteristic curves (AUCs) of HDL-C and apoA-1 levels at admission were 0.78 (95% CI, 0.70-0.85) and 0.85 (95% CI, 0.76-0.91), respectively. For in-hospital deaths, HDL-C and apoA-1 levels demonstrated similar discrimination ability, with AUCs of 0.75 (95% CI, 0.61-0.88) and 0.74 (95% CI, 0.61-0.88), respectively. Moreover, patients with lower serum concentrations of apoA-1 (<0.95 g/L) or HDL-C (<0.84 mmol/l) had higher mortality rates during hospitalization (log-rank p < 0.001). Notably, levels of apoA-1 and HDL-C were inversely proportional to disease severity. The survivors of severe cases showed significant recovery of apoA-1 levels at the end of hospitalization (vs. midterm apoA-1 levels, p = 0.02), whereas the mortality cases demonstrated continuously lower apoA-1 levels throughout hospitalization. Correlation analysis revealed that apoA-1 and HDL-C levels were negatively correlated with both admission levels and highest concentrations of C-reactive protein and interleukin-6. Conclusions: Severely ill COVID-19 patients featured low HDL-C and apoA-1 levels, which were strongly correlated with inflammatory states. Thus, low apoA-1 and HDL-C levels may be promising predictors for severe disease and in-hospital mortality in patients suffering from COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL